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Abstract--The influence of the microstructure of heterogeneous material on heat propagation was studied 
by the homogenization method of periodic media. This approach is based on the analysis of third- 
order heat balance equations. The physical interpretation of the corrective terms due to the existence of 
heterogeneities is also discussed in detail. It is shown that the higher terms introduce successive gradients 
of temperature and tensors, characteristic of the microstructure, which result in non-local effects. With 
respect to the heat plane wave, a dispersion phenomenon was shown. Finally, an application is described 

for periodically stratified composites. 

1. INTRODUCTION 

Many works have already been devoted to the 
description of heat conduction in heterogeneous 
materials. Different methods have been developed in 
order to determine the effective conduction 
coefficients of these heterogeneous materials such as : 
the experimental and phenomenological approach [1], 
numerical simulation [2-4], self-consistent theory [5], 
the volume averaging method [6,7] and homo- 
genization of periodic media [8-10]. 

However, these continuum descriptions are only 
valid when the considered heat conduction phenom- 
enon implies a large number of heterogeneities [1, 11]. 
This hypothesis of 'good' scale separation means that 
the macroscopic size L, characteristic of heat con- 
duction in a material, is very large in comparison with 
the size l of its heterogeneities (e = IlL ~ 0). In reality, 
this limit is new.~r reached because of the micro- 
structure, 1 # 0, and the macroscopic size, L 4: ~ .  For 
these reasons, it i,; therefore interesting to investigate 
how the described theories could be modified when 
the hypothesis of scale separation is not perfectly 
respected. 

This study deals with macroscopic conduction 
phenomena whose characteristic length L is 'rela- 
tively' large, with respect to the size /. Under this 
assumption one can expect that effects due to the 
microstructure will appear. In harmonic conditions, 
this corresponds to diffusion lengths of about 5-50 
times greater than the heterogeneities. Under steady- 
state conditions, these phenomena would be observed 
in samples with few heterogeneities or because of a 
high gradient (for example near an angular boun- 
dary). 

The homogeniization method of describing per- 
iodic media, the principle of which is to take into 
account the existence of the two scales (L and/ ) ,  is 
particularly well adapted to this type of analysis. This 
technique of asymptotic expansions allows for an 

improved definition by exploiting higher order equa- 
tions, and considering their role in the macroscopic 
description. Such an approach, which, contrary to the 
common process, is not limited to the first significant 
terms, has already been proposed in the field of mech- 
anics [12, 13] for statics and also in the field of dynamics 
[14]. It allows both the determination of the conditions 
in which the influence of the microstructure is neg- 
ligible and also how the microstructure modifies the 
response of the material. 

In the second part of this article, the author recalls 
the basic principles of the homogenization method. 
Equations up to third order governing the macro- 
scopic heat conduction of a composite are also 
presented. In the third part, the results obtained are 
discussed and an analysis of microstructural effects 
is described. In the fourth section, we describe the 
application of the homogenization method to har- 
monic heat diffusion and we also point out the exis- 
tence of a dispersion effect. Finally, in the fifth section, 
an application of the homogenization method to per- 
iodic stratified composites is described. 

2. HOMOGENIZATION TO THIRD ORDER 

2.1. Principles of  the homoyenization method 
Described in this section are the main principles 

of the homogenization method [15, 16], which is an 
asymptotic method with double variables. 

The existence of two distinct scales is represented 
by a system of double variables x and y. Variable 
x describes variations at the macroscopic scale, the 
characteristic length being L. Variable y describes the 
microstructure scale with characteristic length 1. The 
small parameter e is defined by the ratio of the two 
scales, such that : 

~ = I / L  y = ~  ix. 

The use of the two variables x and y leads to a trans- 
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differential operators at different order 
(t" = 2, l, O) 
heat flux 
heat flux of o rde r j  

macroscopic effective tensors 
time 
macroscopic temperature 
macroscopic temperature of o rde r j  
macroscopic space variable 
tensor of first-order specific solutions 
microscopic space variable 

NOMENCLATURE 

Y 

Z 

tensor of second-order specific 
solutions 
tensor of third-order specific solutions. 

Greek symbols 
diffusivity 

7 ratio of volume heat capacity to their 
average : pc / (pc)  

e smallparameter ratio o f  micro and 
macro lengths 

0 temperaturefield 
ff temperature field of  order j 
p density 
co pulsation 
f~ spatial period. 

Other symbols 
V gradient operator 

contraction of tensor 
( ) average value on the period 

formation of the common spatial derivatives into 
d x + s  -I dy, and an expression of the variables in the 
form of asymptotic expansions in powers of e. For  
example, with respect to the temperature, we have : 

O(x,y) = ~ , g J O J ( x , y )  with:O(0J/0 °) = 1. 

Also, the periodicity of the microstructure induces the 
same periodicity of the functions 0 j related to the 
variable y. The homogenization process consists of 
introducing the expansions in the equations governing 
the physics at the local scale, then identifying terms of 
the same power in e, and finally solving the problems 
obtained in series. 

In principle, this method of asymptotic expansions 
is increasingly reliable the smaller e is in comparison 
with 1, that is, when the separation of scales is clearly 
distinguished. In this case, the description obtained at 
the first significant order corresponds to the macro- 
scopic behavior of the material, with an accuracy of 

For  a given problem, the value of e can be assessed 
by following the same reasoning as that in [17]. The 
homogenization process for heat conduction leads to 
an expansion of temperature of the form (see next 
section) : 

O(x,y) = T°(x) +e .  01 (x,y).  

Therefore, the increment of T°(x) on the cell is such 
that (for example in direction Xl) : 

T°(x,  +l') -- T°(x , )  = 0(~. T°(x)).  

Since l, expressed with the macroscopic variable (x), 
is very small, in order to simplify it can be stated 
that : 

e = IIVx(T°)I/IT°[ whichgives L = IT°I/IVx(T°)[. 

It is interesting to note that the expression of L is the 
same as the one which would have been obtained by 
a dimensional analysis at the macroscopic scale. With 
respect to the heat plane wave in a medium of diffu- 
sivity ct we have : 

T O = A exp ( - i h x )  exp (itot) 

SO 

e = l. lhl = l ~  

giving the classical value : L = x / ~ .  (1) 

2.2. Homogenization applied to heat conduction 
Homogenization has already been applied to the 

study of  conduction in composites according to the 
period geometry, the contrasts of the conduction 
properties of the period components and the presence 
of thermal barriers [8-10, 18]. These descriptions are 
all given at the first significant order. 

Let us consider a finely heterogeneous material for 
which the conductivity tensor k and the volume speci- 
fic heat pC vary locally with a period f~ (Fig. I). For  
simplicity we assume that these parameters are of  the 
same order of  magnitude during the entire period. 
With a harmonic fluctuation of  pulsation to, con- 
duction is denoted by the following equations : 

V. ( - q ) - i t o p C O  = 0 q = - k .  V(O) (2) 

where 0 is the temperature field and q the heat flux. 
The full-stop indicates a contraction (and double full- 
stop indicates double contraction, etc). V is the nabla 
operator. If  the variations of  k are not continuous, 
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2.2.2. Solutions. Only the general ideas are discussed 
here. Detailed solutions of the problems for successive 
orders--close to those proposed in [14] for elastic 
wave propagat ion--are  given in Appendix 1. 

The problems, which are to be solved successively, 
all address the search for ~-periodic temperature fields 
0, such as : 

Fig. 1. Medium with periodic microstructure. 

the equations have to then be interpreted in the form 
of the distributions, and 0 and q. n must be continuous 
through the discontinuity surfaces (n being normal). 

As we are concerned with transient heat propa- 
gation at the macroscopic scale, equation (2) is there- 
fore already scaled at the macroscopic level for which 
L is the reference length. 

2.2.1. The set of problems to be solved. Using the 
system of double wiriables x and y, the heat flux takes 
the following form : 

q = - k .  [Vx(0) + ~ - '  Vy(0)] 

where Vy and V~ are; the gradients calculated according 
to the variables y and x respectively. The heat balance 
is then written as : 

e-IVy, ( - - q ) + V  x . (--q)--kopCO = O. 

When using the temperature field only, the initial 
problem (2) can be', transformed as follows : 

e-2L-2(O)+e- '  L-I(O)+ L°(O) = 0 

where : 

L-2(O) = Vv. [k. Vy(O)] 

L -1 (0) = V v . [k. Vx(O)] + V~. [k. Vy(O)] 

L°(O) = V~. [k. V~(O)] -iogpCO. 

When introducing asymptotic expansions into these 
differential equations, the following problems should 
be solved in sequence : 

L-2(O°) = 0 i.e.:Vy. [ - q - ~ ]  = 0 (3a) 

L-2(O ')  = --L-l(O °) Vy. [__qO] = Vx " [q--,] 

(3b) 

L-2(0 2) = -L- l (Ol)-L°(OO) 

V y . [ - ¢ ]  = Vx.[q°l+iogpC0 ° (3c) 

L-2(O 3) = - L - , ( O  2) -LO(O ,) 

Vy. [__q2] = Vx ' [¢l+icopC0 t (3d) 

L - 2 ( O  ` ) = - - L - '  (0 3) -L°(O 2) 

Vy. [_qa] = V~. [q21 +io~pCO 2. (3e) 

Vy. [-qJ+ i] = Vx . [qJ] + iogpCO j 

with qJ = -k.[Vy(~+~)+Vx(OJ)] (4) 

where temperatures 0 j, 0 j+ ~ and fluxes qJ have already 
been determined by previous problems. 

Because of the periodicity of q J+ 1, a first condition 
called 'compatibility', can be obtained directly by inte- 
grating equation (4) over the period : 

f Vy . [ -qJ+l]dv=- f~n[qY+~] .nds=O 

= fn (Vx. [q J] +iogpCO j) dv 

i.e. 

Vx . [ -  (q J)] -iog(pCO j)  = 0 

with <'> : If~l-I In .do. 

These are fundamental equations, since they involve 
only the macroscopic variable x, and express the heat 
balance of the fluxes with an order d acting on the 
cell. With this compatibility condition being 
considered, the determination of the O-periodic field 
O(x,y) is calculated by using the variational for- 
mulation of the problem. To avoid indetermination 
due to fields of constant temperature T(x), it is neces- 
sary to seek the solution in the vectorial space U 
defined by : 

U = {u/u f~-periodic, ( u )  = 0}. 

Taking the scalar product of (4) by any test field u 
and integrating over fl, we get : 

oVy " [_  qj+l] .udv 

= fnq j+ l .Vy (u )dv - fdn[q j+ l ] .n .uds  

= - fn (Vx. [ -  q J] - iogpCO0, u dr. 

The boundary term being zero by periodicity, we 
obtain after introducing the compatibility equation : 
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Vu~ U 

fnk. Vy(OJ+2). Vy(u)dv = fnk. Vx(OJ+l). Vy(u)dv 

--fn V,. [ ( q J ) - q q .  udv 

- io)  fn ((pCOJ) -pCOJ) " udv. 

The conductivity tensor k satisfies an ellipticity 
condition, under which the Lax-Milgram lemma 
ensures the existence and uniqueness of a field 0 j+ 2 of 
U. This solution depends linearly on the forcing terms 
obtained from the previously solved problems. The 
general solution is obtained by adding to 0 any con- 
stant field T(x). 

2.2.3. Results (see Appendix 1). 
Temperature. The temperature field can be ex- 

pressed by : 

O(x,y) = T°(x) 

+ e[T l (x) + X ( y ) .  Vx (T°)] 

+e2 [T2 (x) + X ( y ) .  V~,(T l) + Y ( y ) . .  V~Vx(T°)] 

..[_ ~3 [ r  3 (x) + X ( y ) .  Vx (T z) + V(y) . .  VxV~ (T  1 ) 

+ Z ( y ) . . .  V~V~Vx(T°)]. 

Tensors X, Y, Z of ranks 1, 2 and 3 respectively, are 
obtained from specific solutions, 0. These ones having 
a zero average, the mean temperature T(x) is given 
by : 

(O(x, y))  = T(x) = r ° (x) + eT a (x) 

+ ~2 T 2 (x) + e 3 T 3 (x) + . . . .  

The gradient of temperature is given by : 

VO(~,y) = V~(T °) +Vy[X. V~(T°)] 

+ e{Vx(r ' )  + Vy[X. v x ( r  ~ )] +V.[X.  Vx(r°)] 

+ V,[Y.. V~V~(T°)] } + ~2 {v~(r  z) + Vy[X. Vx(TZ)] 

+ V,[X. V~(T~)] + Vy[Y.. VxV~(r')] 

+ V~[Y.. V~%(r°)] + 7,.[Z.. .  V~V~Vx(r°)]} + . . . .  

Tensors X, Y, Z are periodic with a zero mean value. 
By averaging, we obtain the mean gradient which is 
also the gradient of the mean temperature : 

(VO(~,y)) = Vx(T °) +Vx(eT')  

+ Vx(e 2 T 2) + Vx(e 3 T 3 ) + . . . .  Vx(T ) . 

Fluxes. The local flux is calculated directly from 
k(y) and VO(x,y): 

q(x, y) = -- k(y) .  V0(x, y). 

The averaged values of these fluxes define the tensors 
K °, ell[ l, e:K 2, e(pCX),  ea(pCY), which together 
characterize the macroscopic behavior. 

(q(x ,y) )  = - {K ° . Vx(T °) 

+ K ° . Vx(e T ' )  + elk ~ .. VxVx(T °) 

+iog(pCX).  Vx(T°)] 

+ K  ° . V~(e 2 T 2) + e l k  I .. VxVx(eT l ) 

+ ko(pCX) .  Vx(eT~)] 

+ e 2 [K2...  V~VxVx( T °) + ko(pCY).VxVx(T°)]} 

where, using formal writing : 

K ° = If~l -~ j~ (k+k .Vy (X) )dv :  2nd rank tensor 

K 1 = [f~[-~ f n ( k X + k .  Vy(Y))dv: 3th rank tensor 

K= = If~l-~ In (kY+k.Vy(Z))dv: 4th rank tensor 

(pCX)  = I~1 -~ fa (pCX) dr :  1st ranktensor 

(pCY)  = If~l- 1 ffi (pCY) dv : 2nd rank tensor. 

(5) 

The expressions (5) of the different tensors, show that 
their orders of magnitude are given by : 

K'  = O(k/m) K: = O(kl2m) 

(pOX) = O(pC&) (pCY)  = O(pCl~m) 
where lm is the dimension of the period expressed 
according to the system of  dilated variables y. Conse- 
quently : 

eK l = O(k/) ~2K2 = O(kF) 

e(pCX) = O(pCI) e2 ( p C Y )  = O(pCl 2) 

where 1 is the dimension of the cell expressed in the 
system of  reference variables x. Therefore, in macro- 
scopic equations, we are lead to use the effective ten- 
sors K ' = e K  1, K " = e : K  2, R ' = e ( p C ~ ) ,  and 
R" = e2(pCY), which are independent of~ (and can be 
directly calculated from known geometry and thermal 
characteristics of period components). 

It should he noted that the closer the period comes 
to being homogeneous, the smaller are the values of 
K', K", R', R". Finally, it is important to note that 
tensors K' and R' are of odd rank and therefore aniso- 
tropic. Therefore, if the material is macroscopically 
isotropic (up to 2nd order) K" = 0 and R' = 0. 

Macroscopic heat balance. With respect to the first 
three significant orders, the macroscopic heat balances 
are the following : 

V~. [ - ( q ° ) ] - k o ( p C )  T ° = 0; 

where: (q0) = _ K  0 "V~(T 0) (6a) 

V~ . [ - ( q ' ) ] - k o ( p C )  T' = 0 

(q~) = - -K ° . Vx(T 1 ) -- K ' . ,  VxV~(T °) 

+ io ) (pCX) .V~(T °) (6b) 
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Vx. [ -  (q2)] _ i o g ( p C ) T  2 = 0 

(q2) = _ K 0 "Vx(T 2) - - K ' . .  V~Vx(T ~ ) 

+ iog(pCX). Vx(T 1) - K 2 . . .  VxVxVx(T °) 

+ico(pCY)V~. Vx(T°). (6c) 

2.2.4. Physical s~mificance of macroscopic variables. 
The variables used in the macroscopic description are 
in fact the volume averages of variables defined at the 
microscopic scale. Their physical significance should 
therefore be specified. 

Temperature. The macroscopic temperature of any 
order TJ(x) is given by the volume averages of local 
fields OJ(x, y). These temperatures TJ(x) can therefore 
be defined as the mean temperature of the cell. 

There is no difficulty in interpreting macroscopic 
gradients of order j ,  since they correspond to macro- 
scopic temperature gradients of the same order, j. 

Heat fluxes. The homogenization introduces volume 
averages of heat fluxes of an order j. It is important 
to determine whether the quantities defined cor- 
respond to the usual physical definition of fluxes which 
are normally obtained by the average heat transfer 
across the elementary surface. 

In order to verify this statement, we transform volume 
integrals into surface integrals using the identity : 

Vy . [qyj] = yjVy . [q] + q~ 

and, by integrating: over any volume V, and using the 
divergence theorem we have : 

fov yj(q'n)ds = - iv(Vy " [q])yjdV+ fvqjdv" (7) 

Flux of zero order. Flux q0 is of zero divergence 
(according to y), and therefore when applying (7) to 
the cell f~, one obtains : 

(qO) = I n l - i  [ yj(qO .n)ds. 
do 

Considering the periodicity of q0, only the integrals 
on the boundaries Sj and S~ (where the normal 
n = +_ ej) are not equal to zero, the others equate to 
zero in pairs 

(q°) = l" l - '  fs q°. y jds- l f~ l - '  fs q°. , 

lj being the period length in ej direction, we have, 
Ifll = lj. sj (Fig. 2). Using the periodicity of qO, the 
final equation becomes : 

(qO) = 6-Itq, l-' fs, qO ds = ISjl-' fs, qO ds. 

Thus, the volume ;average (qO) is actually the surface 
average of elementary fluxes crossing the surface hav- 
ing ej as normal. 

This result can be generalized to fluxes crossing any 
oriented surface ISI • m = A ^ B, where vectors A and 
B are linear combinations--with integer coefficients-- 

of the vectors defining the elementary cell. Let us 
prove that the vector f obtained by surface averaging 
of elementary fluxes crossing S: 

f = [ S [  -~ f s  q° .mdS  isequalto (q°) .m.  

To do this consider the cell f~' (Fig. 2), defined by (A, 
B, ml'), the distance I' between the two faces of normal 
_ m  being such that:  l' = [I)'I/S = lj(ej.m) (no sum- 
mation over j) .  When applying (7) to fl '  and taking 
the scalar product by m, one obtains : 

fn, q° . m dv = fon, (q° . n)(y . m) ds. 

From the definition of fl ' ,  q0 is also f~' periodic, and 
we have : 

If~'l-l fo q° ds = l~l-' fnq° ds = (q °) 

hence : 

(qO). m = if~,l-~ [ (q0.n)(y.m)ds. 
3o 

As previously stated, due to the periodicity, only the 
terms associated with the surfaces having + m as nor- 
mal remain in the boundary integral. Since the dis- 
tance between these faces is / '  we get : 

(qO) .m = (l'/l'. isl) fsq° .mds = f. 

Thus (q0) = _K0.  Vx(T o) actually defines a macro- 
scopic flux vector. In the same manner all the terms 
- K  ° . Vx(T i) are also flux vectors. 

Fluxes at higher orders. Different from q0, the fluxes 
with an order p (p > 0) satisfy an equation of the 
form: 

Vy. [ -qq  = s ° 
where s p is a periodic term not equal to zero but having 
a zero mean value in y. Following the same reasoning 
as above, gives : 

(qP) .m = lSl-l fsqP.mds+lf~' l- l  fn sP(y.m)dv. 

(8) 

From equation (8) it is possible to make two remarks 
concerning the surface average fP of qP on face S: 

fP = 181-1 fsqP.mds 

is not a macroscopic quantity. In fact, with : 

fp = (qP).m+lfl ' l -~ [ sP(y.m)dv 
do 

and as s p . (y.  m) is not a periodic term, the value o f f  p 
will depend on the choice of the period used in the 
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calculation. This means that the surface average of qP 
will vary at the microscopic scale. 

Moreover this expression proves that the operator 
connecting m t o f f ( m )  is not linear, and consequently, 
the surface average o f  f luxes qP does not define a tensor. 
On the contrary, it is volume averages that define a 
tensor, but these averages cannot be interpreted in 
terms of a flux. In the next section the meaning of 
the macroscopic equations which involve (qP> tensors 
will be explained. 

3. ANALYSIS OF THE DESCRIPTION INVOLVING 
HIGHER ORDER TERMS 

This section studies the role of higher order 
expressions. Taking into account the difficulties in the 
interpretation of averaged fluxes (qP) (p > 0), their 
influence will be analysed by use of macroscopic heat 
balance equations. 

3.1. Interpretation o f  balance equations 
3.1.1. Macroscopic conduction equation.The balance 

equation (6a) with zero order, corresponds exactly to 
the Fourier equation of heat conduction. Field T O 
is the value which one would expect to appear in a 
continuum medium with a conductivity tensor K ° and 
a volume specific heat of(pC}.  However, this descrip- 
tion is valid only with an accuracy of e. 

3.1.2. Heat sources due to microstructure. Let us 
now examine equations (6b) and (6) with respective 
orders of 1 and 2. As vector - (qP>  (p > 0) is not a 
flux, these equations cannot be directly interpreted. 
Since the terms - K  ° . Vx(T p) in -<qP> are fluxes, it 
is then possible to rewrite equations (6) to allow for a 
physical interpretation, so : 

V~. [K ° . Vx(T°)]-i¢o(pC>T ° = 0 (9a) 

Vx. [K ° • Vx(eTl)] - i ¢ o ( p C ) e T  l = 

-Vx .  [K'. .  VxVx(T°)] +itoR'.  Vx(T °) (9b) 

Vx. [K ° • Vx(e 2 T2)] - i¢o(pC>e 2 T 3 = 

-Vx .  [K'.. VxV,(eT')] +i~oR'. Vx(eT') 

- V , .  [K"... VxV~Vx(T°)] +koR".. Vx. vx(r°)]. (9c) 

Equations (9b) and (9c) are Fourier equations applied 
to the fields eT  ~ and e2T 2 respectively, in which heat 
source terms resulting from temperature fields at lower 
orders appear. Therefore, unlike what we would 
expect to happen in a perfectly homogeneous material, 
the presence of a microstructure results in a distri- 
bution of source which then generates a series of 
temperature fields of an increasingly lower amplitude : 
fields of order inferior to the value of i generate sources 
of an orderj which themselves generate a field of order 
j, and so on. 

These heat sources arise from the fact that the equa- 
tions which express the heat balance of the cell with 
order # do not take into account contributions of 
order #+~. The latter then become forcing terms in 
the balance equation with an order of #+ i. Conse- 
quently, in order to counterbalance these sources, a 
temperature field T j+~ arises which then satisfies the 
conduction equations of the homogeneous equivalent 
medium. 

The source terms are connected to the successive 
gradients of the temperature, and therefore introduce 
a weak non-local effect in the conduction phenomena. 
It is clear that the closer the temperature comes to 
being homogeneous, the weaker will be the sources. 
Conversely, when temperature gradients are signifi- 
cant, the corrective terms become significant, and so 
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amplify the non-local effect and modify the solution 
T O of  the equivalem homogeneous medium. 

The sharper the heterogeneities at the microscopic 
scale, then the larger the values of K'  and K" will be, 
and also the greater will be the significance of non- 
local terms (for a given level of the macroscopic gradi- 
ent). Finally, if the material presents an isotropic 
macroscopic behavior the first significant source term 
will appear with an order of e 2 (since K ' =  0 and 
R ' =  0). 

3.2. Solutions to bmmdary condition problems 
For a material of known microstructure, tensors 

K °, K', K", W, R" can all be calculated. In spite of this, 
the determination of macroscopic solutions, up to the 
third order, for any given boundary condition prob- 
lem, necessitates the; knowledge of the limit conditions 
to be applied to the fields TJ(x). 

3.2.1. Macroscopic solution. Let us now consider, at 
the macroscopic scale, a body B, the boundary of 
which is OB, which is submitted to the following con- 
ditions on its border : 

---on the portion 0BF of 0B, an imposed flux F(x) ; 
- - o n  the complementary portion 0Br = 0B-0BF, an 
imposed temperature O(x). 

At zero order, the field T°(x) is determined by the 
conduction equation (9a) and the following boundary 
conditions : 

- -K ° . Vx(T°(x)). N = F(x) 

on OBv (having N as normal) 

T°(x) = O(x) on 8Br. (10a) 

The calculation of the field Tt(x) is done by solving 
another conduction problem governed by the equa- 
tion (9b) where the microstructural sources are 
deduced from the value of T°(x). The boundary con- 
ditions applied to :U (x) must be such that the global 
field T°(x) + eT ~ (x) meets the macroscopic conditions 
imposed on OB, i.e. 

- K  °. (Vx(r°(x)+eTl(x))) .N= F(x) onOBF 

T O (x) + e T 1 (x) =-- O (x) on OBr. 

Taking into account (10a), T ~ (x) follows a Neumann 
condition on t~BF, and a Dirichlet condition on OBr 
such that : 

- K  ° . V x ( e T l ( x ) ) . N = O  onOBF 
(10b) 

eT I (x) = 0 on t~Br. 

By the same principle, the macroscopic field e2TO(x) 
is fully determined by equation (9c), which calculates 
the microstructural sources from T°(x) and eTa(x) 
obtained beforehand, and also the boundary con- 
ditions of  zero flux and temperature on OBe and 0Br 
respectively (i.e. conditions (10b) where eET2(x) 
replace ~T 1 (x)). 

By this type of reasoning with respect to the macro- 

scopic scale, we obtain the macroscopic temperature 
which appears in the interior of the body B (up to the 
third order). However, this solution does not take into 
account the edge effects existing on a thin layer around 
dB. 

4. PROPAGATION OF A HEAT PLANE WAVE 

In this section we consider the incidence of the terms 
of superior order on the propagation of a macroscopic 
plane wave. We consider an homogenized medium 
(anisotropic) in which an harmonic plane wave propa- 
gates in any direction e r 

In order to simplify the calculations (without limit- 
ing the scope of reasoning) we switch to a one-dimen- 
sional problem. In order to achieve this, we assume 
that the equations (and the tensors) are expressed in 
an orthonormal frame Ep whose first axis ox~ direction 
coincides with e r 

In the following, we simplify by suppressing the 
suffix x for the macroscopic operators and by writing 
x for the variable x~. In the frame Ep, we look for 
plane waves of the following form : 

T o = A exp ( - i h x )  exp (itot). 

Fourier equation (9a) leads to the classic dispersion 
equation : 

A[( - ih)2Kl  °~ - iog (pC) ) ]  = 0 

which then gives : 

h 2 = - i e ~ ( p C ) l K  ° ' = - i @ ~ t  

h = - t - ~ .  (1 --i)/~/2 

where ct is the macroscopic thermal diffusivity in direc- 
tion e r 

We then assume that at zero order, a wave of unit 
amplitude propagates. That is to say : 

T O = exp ( - i ~ .  x) 

x exp ( - - ~ .  x) exp 0o90. (11) 

This definition of the wave is correct only to 
e = l.  ~ t ) .  In the case of very long wavelengths, 
this precision is acceptable. However, for wavelengths 
of  only 5-50 times greater than the size of the het- 
erogeneities, more precision must be sought by con- 
sidering terms of higher order. 

For  a given order we can calculate the heat sources 
resulting from temperature fields of inferior orders. 
This allows us to focus on the field induced by its 
sources. Then we obtain the macroscopically observ- 
able temperature field by adding the fields at different 
orders. 

As these problems are linear, all the fields oscillate 
at the same frequency, and therefore the term exp (kot) 
can be suppressed. 
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4.1. Correction o f  first order 
Equation (9b), expressing the macroscopic heat bal- 

ance with first order, shows that T ~ is the sum of 
any field solution of the homogeneous problem (but 
without interest in this case) and of the field generated 
by the following heat source : 

- V x .  [ K ' . .  VxVx(T°)] + ko(pCX>. Vx(T °) 

the explicit expression of which is (using index 
notation) : 

- -  K i  l/m T°,lra, ~- k o ( p C X J )  T °. 

In introducing expression (1 1) of T °, we get : 

- ih [( - ia~/a)K ] I I _~_ ia~( p CX ~ )] exp ( - ihx) 

= - i h .  ( - ko /~ ) (K l  l '  - K ° '  (pCX ' >/ 

( p C ) )  exp ( - i h x ) .  

This volume source is equal to zero, since it can be 
demonstrated (as shown in Appendix 2) that : 

K) tm KO;(pCX2)/<pC) oj , o; j = < k ~ X  -k, .Z>. 

This result gives a field T l equal to zero. Thus, there 
is no correction with this order. 

4.2. Second order : dispersion effects 
Equation (9c) shows that the correction obtained 

from using the second-order terms comes only from 
the source resulting from field T o (since T 1 = 0). To 
calculate these sources : 

Vx. [ - -K2 . .  VxVxVx (T°)] +ico(pCY>. VxVx(T °) 

and, with index notat ion : 

2 lmn 0 • lm 0 
- - K  i T , l m n i q - l o ) ( p f Y  ) T , t m .  

So finally, when introducing expression (11) for T O 
we have : 

(ico/~)[-- (i09/c0K~ 1'1 + i c o ( p C Y ' '  )] exp ( - i h x ) .  

Field T 2 is specifically obtained from this source, 
which is not  necessarily zero (whereas it is with respect 
to first order). 

Notice that this source respects the geometry of the 
plane wave: its amplitude is identical at every point 
of planes parallel to the wave front and oscillates 
spatially according to the wavelength. Therefore this 
forcing term excites the dynamic conduction operator 
according to its eigen mode. This is expressed by a 
perturbation which is amplified as the wave 
progresses. Now T 2 is expressed in the following form : 

T 2 = - -  a ( -  ihx) (ko/~) exp ( -  ihx). 

The application of the Fourier operator to this 
expression gives : 

V x . [ K  0 . V x T  2 ] --i¢.opCT 2 

= -- a(ko/~) exp (--  ihx) { [ ( - ih )2K°  ' 

- i 0 9 ( p C ) ] ( - i h x )  + 2 ( - i h ) 2 K  ° '  } 

= 2a(h)2(ioo/cOK°lexp ( - i h x ) .  

By identification with the source term calculated 
above, we can deduce the value of the real coefficient 
a 

a = (K~l' ~/K °~ -- ( p C Y " ) ~ ( p C ) ) ~ 2  

gwing : 

a" = e2a = (KT~I~/K °l --R~l / ( p C ) ) / 2  

so that a" = O(12). 

Thus, up to second order, the field of macroscopic 
wave is given by : 

T(x) = T o (x) + ~2 T 2 (x) 

= [1 -- a " ( -  ihx) (ko/~)] exp ( -  ihx). 

We can observe a correction of second order--with  a 
phase shift of  7r/4~-which increases linearly with x and 
perturbs the wave propagation. In order to analyse 
more closely the influence of this term, we transform 
the expression 

[1-a"(- ihx)( iog/~)]  into:  exp[(ihx)a"(ko/~)]. 

This approximation is correct up to ~3, provided that 
the value of x lies within the boundaries defined as 
follows : 

O(hx) <~ ~-l/2 i . e . : 0 < x < 6  

with: 6 = 1 / I h l ~  = (~/oo)3/4/x/l. 

Thus up to e 3 : 

T(x) = exp ( -  ihx[1 - a"(ko/~)]) 

= exp [ - - i (1- -a"(~o/~))x / -~ /~  . x] 

x exp [ -  (1 + a " ( ~ o / ~ ) ) ~ .  x]. 

We conclude that the global temperature propagates 
with characteristics in celerity and attenuation slightly 
different from that which has been calculated at zero 
order. This is caused by a ' resonant '  effect generated 
by the microstructural sources, and from interferences 
between the corrective waves and the zero-order wave. 
Macroscopically, heat propagates as if the diffusivity 
has a complex value ~c : 

~c = ~. [1--2.a"(im/00] (uptoe3).  

The relative correction of the diffusivity coefficient is 
of  an order g2 that is to say O(co/2/~) and this dis- 
persion effect varies linearly with frequency. It is 
important  to note that in spite of this dispersion, 
diffusivities ~ and ~c stay within the same range of 
magnitude (since e << 1). 

These results, valid for any kind of  microstructure, 
agree with those obtained in [19, 20] where transient 
heat transfer is studied analytically in stratified com- 
posites. 
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4.3. Superior orders 
The calculation of superior terms becomes very 

complex even in the case of a plane wave. However, 
as these terms can only generate (at superior orders) 
phenomena of the same nature as those that have 
already treated elsewhere, it is therefore not necessary 
to develop them here. 

the heterogeneous medium. Oscillations with a period 
shorter than z¢ do not generate a macroscopic wave 
front associated with a macroscopic flux, since heat is 
scattered in any direction by the diffraction on the 
heterogeneities. Therefore, according to thermal 
macroscopic waves, the medium behaves as a 'low- 
pass' filter. 

4.4. Description beyond the distance 6 
From the preceding study, it is clear that the analy- 

sis of the effects of scattering at superior orders is only 
correct for a distance of propagation 6 which is large 
but also limited in comparison with the wavelength. 

Such a restriction of the domain of analysis comes 
from the amplification phenomenon which generates 
wave fields that increase with the distance of propa- 
gation. As a result., beyond distance 6 terms of order 
j change with respect to range and interact with terms 
of order j - 1 .  Since the fundamental hypothesis of 
discrimination of different orders is no t  longer 
respected, the results of the homogenization are there- 
fore incorrect. 

To avoid this difficulty we reason as follow : in the 
vicinity of the distance 6, in a plane parallel to the 
wave front, the medium is now not only influenced by 
the temperature at zero order. In order to satisfy these 
new boundary cortditions a new wave of first order, 
and propagating in the same direction as the wave of 
zero order is added. For each of these waves, the 
analysis conducted earlier is still applicable and the 
global wave field can be described theoretically. 

4.5. Application to transient heat conduction 
Until now the results have been established for har- 

monic heat variations. Because of the linearity of the 
phenomena, the description for transient variations 
can be directly deduced by inverse Fourier transform, 
provided that the scale separation condition is ful- 
filled : 

= IU(o~I~ ) << 1. 

That means that l:he pulsation spectrum of the tem- 
poral signal must lie within the range : 

0 < co << ~Oc = c#P. 

Under this assumption it was shown that the micro- 
structural effects modify the usual diffusivity, by 
adding an imaginary part which linearly depends on 
the pulsation. Therefore one can expect that the modi- 
fication of the response will essentially concern the 
highest frequency part of the signal (i.e. the fastest 
variations). The main consequences of this corrective 
coefficient will be an increase of the attenuation and 
a delay in the time arrival of the heat wave. Moreover, 
as this correction is dispersive, it will induce a pro- 
gressive modification of the signal during its propa- 
gation. 

Finally, let us notice that the pulsation o9~ = ajF 
corresponds to a characteristic time zc = 2nl2/~ for 

5. EXAMPLE: STRATIFIED COMPOSITES 

The preceding results have been applied to periodic 
stratified composites, which have already been studied 
in a number of papers, for example [8-10, 19, 20]. 
This kind of microstructure presents an advantage of 
simplicity, which allows for an analytical expression 
of the tensors K ° and K". But, its 1D structure induces 
some specific properties. 

We assume that the period (Fig. 3) is constituted of 
two isotropic layers a and b, with respective thick- 
nesses of (l-c). l and c. L As we use microscopic vari- 
ables to solve elementary problems, in this system of 
variables, the period size is Im= e-ll. Let k, and kb 
equal the conductivity constants of the layers a and b 
respectively, k is a function having the value ka in the 
layer a and kb in the layer b. 

Owing to the 1D geometry, the fields depend locally 
on variable y~ (noted simply as y). Thus, the differ- 
ential operators L -2, L - l ,  L ° take the following 
expressions : 

L -2 (0) = O[k O(O)l~Y]l@ 

L -I (0) = a[k a(O)lax, ]/Oy + 8[k O(O)/ayl/dx, 

L °(0)  = #[k a(o)/dxll/~xi + #[k ~(o)/ox2]lax2 
+ O[k O(O)/Ox3]/Ox3 - icopCO. 

5.1. The conductivity tensor K ° and ( p C X )  
Denoting as T ° the components O(T°)/Oxj of the 

macroscopic temperature gradient, problem (3b) is 
rewritten in the simple form : 

8[k a(O)/Oy + k T°, ]~By = 0 

with X; -k(t?(X~)/Oy+T°l)  continuous and Ira- 
periodic, and (X} = 0. We now define three solutions 
X j associated with T °. It is clear that X 2 = X 3 --- 0 and 
the expression of X l is as follows : 

X l (y) = f ( y ) .  kD(1/k) 

where, by convention, for each function 4~ taking a 
constant value q~a in layer a and ~bb in layer b, we 
introduce the notations : 

= [ ( 1  - c)14% + cl49~1-1 

D(q~) = e(1 -- C)lm(~a - -  ~b) 

andf (y)  being the function: 

f ( Y )  = [y/lm-- (1 -- C)/2]/(1 -- C) in layer a 

-- [y/lm + c/2]/c in layer b. 
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Fig. 3. Period of the stratified composite. 
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Consequently, the heat fluxes - k  °j associated with 
T ° a r e  : 

k °1 = ( _ k , 0 , 0 )  k °2 = ( 0 , k , 0 )  k °3 = ( 0 , 0 , k ) .  

We obtain the macroscopic conductivity tensor by 
averaging. The components different from zero have 
the classical values : 

K °' = k  K ° 2 = K  °3 = < k > .  (12) 

From the expression of X, we also have: (pCX> = 0. 
It is easy to verify that the conductivity tensor given 
by expression (12) is valid for any 1D distribution 
of conductivity coefficients. Moreover the results can 
easily be generalized to anisotropic layers for which 
the components  of the macroscopic conduction tensor 
are given in the formula : 

K °j = (k~> - (k]k) /k l  > + <k~/kl >(k) /kl  >/< 1/kl >. 

5.2. Tensor K'  
The tensor K 1 is determined from elementary solu- 

tions Y of the problem (3c). These solutions depend on 
the double gradient of temperature VxVx(T °) whose 
components are denoted T O We now treat (see am. 
Appendix 1) : 

O[k O(O)/dy+kX' TO 1]/OY = ( ? -  1)_kT°l, 

+ ( ? ( k > -  k)(r°22 + r,~ 3). 

Solving these problems, whilst taking into account the 
continuity and periodicity of flux and temperature, we 
deduce the expressions ofY t" which do not  equal zero : 

V 11 = [<F> - F (y ) ]D(1 / k )k -  [(F/k> - F(y)/k]k_D(7) 

y22 = y33 = [<F/k>-F(y) /k][ (D(k) -<k)D(?)]  

where : 

F(y) = ff(u) du = 

y[y/l., -- (I -- e)]/2(l --e) in layer a 

--y[y/1,. + e]/2c in layer b. 

We deduce the expression of the components of  heat 
fluxes k I resulting from the double gradient of tem- 

perature. The ones which do not  equal zero are those 
associated with : 

T, ° 1 : k111 = DO,)kf(y)  

T.°22, T.°33 : k122 = k133 = f ( y ) [ D ( ? ) ( k ) - D ( k ) ]  

T o 0 .12, T.13 : k2 ~12 = k~ 13 =f(y)kD(1/k)k_.  

It appears that even though these fluxes of order e are 
different from zero, they still have a zero average on 
the cell. Thus, this 1D microscopic geometry presents 
the particularity of defining an anisotropic material, 
for which : 

K j = 0  t h u s K ' = 0 .  

This is due to the fact that the gradients of first order 
are constant  in each constituent. In the more general 
case where the microstructure has a 2D or 3D 
geometry, this point no longer holds and K'  ¢ 0. 

From the knowledge of Y, we can easily derive the 
expression of the component  different from zero of 
the tensor ( pC Y)  or R" 

S " "  = (F / 1 2 ) [ D ( p C ) I ~ D ( 1 / k ) -  D ( p C ) / ( p C ) ]  

R "22 = R "33 = (F/12)[D(pC)](1/k)[D(k)  

-- ( k ) D ( p C ) / ( p C ) ] .  

5.3. Tensor K" 
Tensor K" is determined from the elementary solu- 

tions of problem (3d) depending on the third gradient 
of temperature. As K 1 = 0 and (pC X)  = 0, we have 
to solve the elementary problem (see Appendix 1) : 

63[k 63(O)/~y+k(ytl T, t l ' +y22T,22 ~ +y33 T,331)]/Oy 

= - ( k ]  ~1T, IJI +k]22 T,221 +k133 T,33~ +k,112T,~22 

+k31 13 T,133)-l-~'X(kT,111 + (k>T,22~ + (k>T,331). 

In order to obtain K 2, it is only necessary to determine 
the expression 0(Z)/0y, and the fluxes k 2 associated 
with the third gradient of T° ;  the final result being 
an average of these. After calculation we obtain the 
components (not equal to zero) of the tensor K" which 
are listed below and expressed in the system of  macro- 
scopic variables : 
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K] ' l ' l  = (12/12)k_[D(1/k)k][(pC)kD(1/k) 

- -D(pC)] / (pC)  

K'¢ 122 = K'~ 133 = (12/12)k[D(1/k)k_][(k)D(1/k)] 

K'~ 221 = K'~ T M  = (F/12)k_[D(1/k)][(k)((pC)k_D(1/k) 

-- D(pC) )/ ( p C )  + D(k)] 

K ~ ,  2 = K~l~3 = (l:'/12) [D(k)]  ~ D  (1/k)  

- D ( p C ) / ( p C ) ]  

K~ 222 = K~ 332 = K':1223 = K~ 333 = 

(12 /12)[D(k)(1/k ) ] [D(k ) -  D(pC) (k  ) / (pC)] .  

5.4. Application to heat propagation 
For  example, consider a specific stratified composite 

with k~ = k, kb = 15k, and c = 0.5. For  simplicity 
assume that the two layers have the same specific 
volume heat. Fo r  this medium the values of  the ten- 
sor's components  are : 

K °, = k = k . 1 5 / 8  K ° 2 = K  °3 = ( k ) = 8 . k  

RI u = 0 

K'~ '11 ~ = (l 2 / 12)_k[D (1/k)k] 2 = (kl 2 / 12). 49 .15 /32 .64  

K'( 122 = K'( 133 

= (12/12)k[D(1/k)k_][(k)D(1/k)] = (k12/12)49/32 

K'( 22~ = K'~ T M  = (l::/12)k_[D(1/k)][(k)kD(1/k) 

+D(k)]  = (kl2/12)49/16 

K~ 112 = K~ ~3 = (12/12) [D(k)][kD(1/k)] 

= (k12/12)49/32 

K~ 222 = K~ 332 = K~ 223 = K~ 333 = 

(lZ/12)[D(k)(1/k)]O(k) = (k/2/12)49.2/15. 

Let us now study a plane heat wave propagating in a 
direction e~ having as components  (sin (tp), cos (¢p), 0) 
in the frame (OXl, x2, x3). In this direction, the thermal 
diffusivity % is giw:n by : 

~ = ~s in : '  (q~) + ( k )  cos 2 (q~)]/(pC) 

and the corrective coefficient a~ is such that : 

a~. ~ s i n  2 (q~) + ( k )  cos / (~o)] = 

- [K ' (  l~ sin 4 (~o) + (K'¢~22 +K';22] 

+K~ l~2) cos 2 (~o) sin 2 (q0 +K~ 222 c os4 (~o)]. 

Following the results of  Section 4.2, the temperature 
field is given by : 

T(x) = T(0) exp [ - i ( x .  e ~ ) ( ~ ) ( 1  - ia~co/a~)]. 

By introducing the dimensionless space variable x* 
and pulsation co*, defined by : 

x* = (x.e,o)( ~x/--~o)/g ~o* = col2/cXo 

we get : 

T(x) / T(0) = exp [ - (1 + i) (x~oo/~)  

(1 -iog*a'~oo~o/Fot~)gx*]. (14) 

Expression (14) has been used to compute the per- 
turbation on heat conduction at the limit dimen- 
sionless pulsation 09* = 1, in three directions (~o = 0, 
g/4, g/2) for which : 

= 1.273 

= 2.066 

a'~/l 2 = - 49/720 

a'~/4Cto/12ct,~/4 = - 0.089 

a'~/z Cto/l 2 ~/2 = - 49/720. 

The results are shown in Fig. 4 where the temperature 
distribution for both descript ions--with and without 
microstructural effects--are presented for a given time 
(t = 0 +  2gn/o9 if Tx=o = T(0) sin (cot)). 

In terms of  transfer function of  the medium, the 
amplitude and phase ~x of  the temperature are easily 
deduced from (14) : 

log (T(x)/T(O)) = -- (g/In (10))(~x/~o/~) 

(1 + o~*a~ao/12~)x * 

~x = - n ( ~ ) ( 1  - co*a~o:o/12c%)x *. 

Conversely to the usual description, these parameters 
depend on the pulsation. Since a~ is negative, the 
increases of  attenuation and the phase retardation due 
to the microstructure clearly appear. In Fig. 5 the 
logarithm of  temperature amplitude at different values 
of  x*, for a heat wave propagating in three directions 
(~p = O, re~4, 7z/2), is presented according to the dimen- 
sionless pulsation. This Bode diagram shows that the 
microstructural effects essentially concern dimen- 
sionless pulsations higher than 0.05, and are more 
significant for large values of  x*, 

6. CONCLUSION 

The homogenizat ion method is used to study the 
heat propagat ion in media with a periodic micro- 
structure when the wavelength is relatively large in 
comparison with the dimension of  the heterogeneities. 

It is shown that when we consider only the zero 
order, the macroscopic description is identical to the 
one we would expect to obtain for a homogeneous 
material. Taking into account the terms of  a superior 
order, we diverge from the classic conduction descrip- 
tion, as non-local terms are introduced. The latter 
have to be interpreted in terms of  microstructural heat 
sources. 

For  an harmonic plane wave, analysis of  the effects 
of  the corrective terms brings into evidence a dis- 
persion effect (varying according to od2/oO. This 
phenomenon results f rom interferences between the 
initial wave of  zero order and the waves generated by 
microstructural sources. 
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Fig. 4. Temperature at time t = 0 ( + 2zn/~o) in a semi-infinite 
stratified composite subjected to harmonic oscillation 
(~o = %//2) of amplitude T(0) sin (~ot) at the origin. The black 
line and the dotted line correspond to the descriptions with 
and without higher terms respectively. Three orientations of 
the composite were investigated--q~ = 0 : propagation in the 
direction of the layers ; q~ = ~/4 ; ~ = ~/2 : propagation in 

the direction normal to the layers. 

The  m e t h o d  is a theore t ica l  m e a n s  to quan t i fy  these  
effects us ing the  k n o w l e d g e  o f  the  t he rma l  p rope r t i e s  
o f  the  per iod .  The  ca lcu la t ion  o f  the  di f ferent  t ensors  
tha t  c o m e  in to  the  m a c r o s c o p i c  desc r ip t ion  is 
p resen ted ,  t ak ing  per iod ic  s t ra t i f ied mate r ia l s  as an  
example .  

F ina l ly  these  results  have  been  es tab l i shed  whi ls t  
a s suming  tha t  the  m e d i u m  was  mic roper iod ic .  I f  the  
hypo thes i s  o f  per iod ic i ty  is n o t  verified the  m e t h o d  
is no  longer  direct ly appl icable .  Howeve r ,  in m a n y  
p rob l ems ,  the  s t ruc ture  o f  the  equa t ions  o f  a h o m o -  
genizable  m e d i u m  is identical ,  w h e t h e r  the  mic ro -  

o 
[.., 

E 
etO 
O 
,.J 

- 1 -  

- 2 -  

- 3 -  

-4 

-5 

-6 

-7 

-2 

x* = 1121314 

- I  0 

Log [w*] 

¢p = 'n' /4 

o 

,1 

:f 

-2 

x* = 1/2 

q~ = ~r/2 

I ] 
-I 0 

Log [w*] 

Fig. 5. Bode diagram of  the thermal transfer function of a 
semi-infinite stratified composite (orientations ~0 = 0, rt/4, 
~/2) for different values of  x* (logarithm of the temperature 
according to the logarithm of  the dimensionless pulsation). 
The black line and the dotted line correspond to the descrip- 

tions with and without higher terms, respectively. 

s t ruc ture  o f  the  m e d i u m  is pe r iod ic  o r  s tochas t ic  [11]. 
However ,  this p o i n t  r ema ins  an  open  issue and  for  
descr ip t ions  inc lud ing  h igher  orders .  

REFERENCES 

1. H. J. Lee and R. E. Taylor, Thermal diffusivity of  dis- 
persed composites, J. Appl. Phys. 47, l, 148-151 (1976). 

2. L. S. Han and A. A. Cosner, Effective thermal con- 
ductivities of  fibrous composites, J. Heat Transfer 103, 
387-392 (1981). 

3. A. A. Zick, Heat conduction through periodic array of  
spheres, Int. J. Heat Mass Transfer. 26, 465-469 (1983). 

4. R. Pitchumani and S. C. Yao, Evaluation of  transverse 
thermal diffusivity of  unidirectional fiber-reinforced 
composites, Int. J. Heat Mass Transfer. 35, 2185-2194 
(1992). 

5. Z. Hashin, Assessment of  self consistent scheme approxi- 



Microstructural influence on heat conduction 3193 

mation : conduction of  particulate composites, J. Comp. 
Mater. 17 (1968). 

6. I. Nozad, R. G. Carbonell and S. Whitaker, Heat con- 
duction in multiphase systems-I. Chem. Engng Sci. 40, 
843-855 (1985). 

7. M. Qunitard and S. Whitaker, One and two equation 
models for transient diffusion processes in two-phase 
systems, Adv. Heat Transfer 23, 369-464 (1993). 

8. J. L. Auriault, Eflective macroscopic description for heat 
conduction in periodic composites, Int. J. Heat Mass 
Transfer 26, 861-869 (1983). 

9. J. L. Auriault and P. Royer, Double conductivity media : 
a comparison between phenomenological and homo- 
genization approaches, Int. J. Heat Mass Transfer 26, 
2613-2621 (1993). 

10. J. L. Auriault and H. I. Ene, Macroscopic modelling 
of  heat transfer in composites with interfacial thermal 
barrier, Int. J. Heat Mass Transfer, 37, 2885-2892 
(1994). 

11. J. L. Auriault, Heterogeneous medium. Is an equivalent 
macroscopic description possible? Int. J. Engn# Sci. 29, 
785-795. (1991). 

12. B. Gambin and E. Kroner, High order terms in the 
homogenized stress-strain relation of  periodic elastic 
media, Phys. Star. Sol. (b) 151, 513-519 (1989). 

13. C. Boutin, Appli,cation de l'homoghnhisation ~t l'6tude 
de la localisation. 6dme Colloque Franco-Polonnais de 
mdcanique des so/s, Douai, pp. 367-374 (1993). 

14. C. Boutin and 3. L. Auriault, Rayleigh scattering in 
elastic composite materials, Int. J. Engn# Sci. 31, 1669- 
1689 (1993). 

15. A. Benssoussan, J. L. Lions and G. Papanicolaou, 
Asymptotic Anahesis for Periodic Structures. North-Hol- 
land, Amsterdam (1978). 

16. E. Sanchez Palencia, Nonhomogeneous Media and 
Vibration Theoty (Lecture Note in Physics, 127). 
Springer, Berlin (1980). 

17. C. Boutin and J. L. Auriault, Dynamic behaviour of 
porous media saturated by a visoelastic fluid. Appli- 
cation to bituminous concrete, Int. J. Engn# Sci. 28, 
1157-1181 (1991). 

18. E. Sanchez Palencia, Homogenization Techniques for 
Composites Media (Lecture Note in Physics, 272), pp. 
42~1.  Springer, Berlin (1985). 

19. A. M. Manaker and G. Horvay, Thermal response in 
laminated composites, Z. Anyew. Math. Mech. 55, 503- 
513 (1975). 

20. G. Horvay, R. Mani, M. A. Veluswami and G. E. 
Zinsmeister, Transient heat conduction in laminated 
composites, J. Heat Transfer 95, 309-316 (1973). 

APPENDIX: HOMOGENIZATION OF HEAT 
CONDUCTION II~l PERIODIC MICROSTRUCTURES 

This Appendix states the theoretical developments which 
lead to the macroscopic heat balance equations up to second 
order. 

Appendix 1. Resolution of the problems encountered at dif- 
ferent orders 
In order to simplify 'we will write k and p.  C instead of  k(y) 
and p(y)C(y), respectively. 

Order e -2. The first problem solved is the following (3a) : 

L-2(O °) = Vy. [k. Vy. (0°)] = 0 

whose evident solutiions are constant fields on the period: 
0 o = TO(x) 

Order e- ~. At this order we imply the system (3b) : 

L-2(O ') = - - L - ' ( T  °) 

which can be written: 

r e .  [k. vy(0')]  + G .  [k. Vx(T°)] = 0. 

As a consequence of  the linearity of  the problem, the general 
solution is given by : 

0' (x, y) = T ~ (x) + X(y).  Vx(T°). 

The one rank tensor X is constructed from the particular 
solutions X i such as : 

k°(y) = k + k .  VAX ] Vy.[k°(y)] = 0 ( X )  = 0. 

The variational formulation is the following : 

fn k°(Y)" Vy(w) dv = fn [Vy(w).k. Vy(X)+k.  Vy(w)]dv 0. 

Using index notations, we have more explicitly : 

01 = T 1 +XJVxj(T°). 

The functions X j being the solutions to the systems : 

k °j = k~+k¢ .VypDIq (k°;),, = 0 (X j )  = 0. 

Order d. From this order the macroscopic balance equa- 
tions are no longer obvious. These equations are obtained 
by integrating in the cell the considered system (3c) : 

L-2(O 2) = - L - t ( O  , ) - L o ( T  o) 

which is more conveniently written as : 

- Vy. ql - V:,. qO _icopCTO(x) = O. 

Taking into account the stress periodicity, we have : 

Vx . [--(q°)l-- ioJ(pC) T° = 0 

(q0) = _ (k .  [Vy(0 ~) +Vx(T°)]) .  

Then, by putting the expression 0 ~ in q0, we deduce the 
macroscopic momentum equation at zero order (9a) : 

Vx. [K ° .Vx(T°)]-ie~(pC>T ° = 0 K ° = <k°>. 

The equation allowing the determination of  02 is: 

Vy. [k. (Vy(0 2) + Vx(O' )] = -- Vx. [k. (Vy(0') + Vx(T°))] 

+ io~pCT ° (x). 

In this equation we substitute 0 ~ by its expression and 
kopCT°(x) from the macroscopic equation (9a) obtained 
above. We then have : 

Vy. [k. (Vy(O2))-~-Yx(X, VdT°))I  +V r . [k. (V~(TO))] = 

- V ~ .  [k ° . Vx(T °) - T K  ° . Vx(T°)]. 

In order to simplify this expression, we have introduced Y(Y), 
the ratio of the volume specific heat to the average value, 
such that : 

~,(y) = p(y)C(y)/(pC). 

We observe that the solution 0 z depends on two forcing 
terms : 

- - t h e  first one is associated with Vx(T~), 
- - t h e  second one is associated with VxVx(TO) i.e. the double 
gradient of  the temperature T O at zero order. 

As a consequence of the linearity of the system, the field 
solution is a linear combination of particular solutions 
associated with each of  these forcing terms. It is important 
to notice that the problems linked to the temperature at first 
order are identical to those already treated at zero order. 
Consequently we have : 

02(x,y) = T 2 (x) + X ( y ) .  Vx(T') + Y ( y ) . .  VxV~(T°). 

The second-rank tensor Y is constructed from the particular 
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solutions Yt~ and verifies : 

k~(y) = k X + k .  Vy[Y] Vy. [kl(y)] = - - [k°(y) - -7(y)K °] 

( Y )  = 0, 

which corresponds to the variational formulation : 

f n k ' ( y ) .  Vy(w)dv = fn[Vy(w) .k .  VAY) 

+ k .  X.  Vy(W)] dv = In [k°(Y) -Y(Y)K°] "wdv. 

Or using the index notat ion : 

02 = U 2 + X/V~j(T I) + ylmVxV x(T°)t~. 

The vectors y~m being the solutions to the systems : 

k) Zm = ki,,X,+kfVyp[y,m](k),,~).~ = yKO, k o, ( y , ' m )  = 0. 

Order el. As above, we first establish the balance equation 
at this order, and we obtain : 

V~. [ - V q  I )] = i¢o(pCO l ) ( q l )  = _ ( k .  [Vy(02) + V,(01)]). 

In order to have an equation where only average tem- 
peratures appear, we introduce expressions of  the fields that 
have already been determined. Thus  : 

ql = - -k .  [Vy(Y.. V~V.(T °) + X .  Vx(Tl)) 

+ Vx(X. V~(T °) + T')] 

= --k'.. V~V~(T °) +k ° . Vx(T') .  

Consequently, the m o m e n t u m  balance at the first order is 
(9b): 

Vx. OK ° . V.(TI)] - - ico(pC)T l = --Vx. [Kl . .  VxVx(T°)] 

+ k o ( p C X ) .  V.(T°)K l = (k  l) .  

The determination of  the field 0 3, is achieved by solving : 

Vy. [k. (Vy (03) --~ Vx(02))] = - Vx. [k. (Vy(02) + V. (01))] 

+ iogpCO 1 . 

That  is, when expressing the different fields : 

Vy. k .  [Vy(0 3) + V . ( Y . .  VxVx(T°))] 

+Vy.  k .  Vx(X. Wx(T l )) +Vy.  k .  V~(T 2) 

= - V . .  [k. (Vy(V.. V~Vx(T°)) + V . ( X .  V~(T°)))] 

-Vx .  [k. (%(x .  Vx(TI)) 

+ V~ ( r ' ) ) ]  + io~pC(X. Vx(T °) + r 1 ). 

When one replaces T l by using the heat balance at the first 
order (9b), we have : 

iogpCr' = 7. [Vx. [K ° • Vx(T1)] +Vx.  K l . .  V,Vx(T°)] 

- [i~o(pCX). Vx(r°)] 

and so, introducing the tensor k ° and k I. 

V r . k .  [Vy(0 3) + V. (Y. .  V~V~(T°))] + Vy. k .  V.(X. Vx(T l)) 

+Vy. k. V,(T 2) 

= - V x .  [k I - -~Kl ] . .  VxVx(T °) - V x .  [k ° - y K ° ] . .  V~(T I ) 

- 7 .  [(pCX)/(pC)-pCX]. VxVx. [K ° . V~(T°)]. 

We notice that  the solution 0 3 depends of  three forcing terms 
associated with : 

- - t h e  gradient of  the average temperature at second order;  

- - t h e  double gradient of  the average temperature at first 
order;  
- - t h e  third gradient of  the temperature at zero order. 

The first two terms give the previously solved problems, 
and the latter introduces a different problem not yet solved. 
Because of  the linearity, the solution to this problem is as 
follows : 

O(x, y) = T 3 (x) + X(y) .  Vx(T 2) + Y(y) . .  VxVx(T ~ ) 

+ Z ( y ) . . .  VxVxVx(T°). 

Z is the third-rank tensor constructed from the particular 
solutions Z "rq. It verifies the equations : 

k 2 = k Y + k .  Vy[Z] ( Z )  = 0 

Vy. [k 2] = -- [k I --i lK 1] -~ ' .  [ ( p C X ) / ( p C )  - p C X ] .  K ° 

or, with indicial notat ion : 

0 3 = T 3 + XJxV(T 2) +YtmVxVx(Tl)t m + ZnPqVxVxVx(T°)npq 

where the vectors Z "rq are the solutions to the systems : 

k2i npq = kTVPq +k~V[Z "pq] (znPq) = 0 

(k2inpq).i = rKlnp-klq np - ~ [ < p c x q ) / ( p C ) -  pcxq]K On. 

Order e 2. At this order we are only interested in the momen-  
tum balance, which is obtained as above : 

Vx. [_<q2>] = ico(pCO 2) 

(q2) = _ ( k .  [Vy(O 3) +Vx(02)]). 

After replacing 02 and 03 by their expression, we get (9c) : 

Vx. [K ° . V~(T2)] - iog(pCT 2) 

= - V ~ .  [Kl . .  V~Vx(T1)] + k o ( p C X ) .  V~(T I) 

- V ~ .  [K2. . .  V.VxV~( T°) ] + k o < p C Y ) . .  V~Vx( T °) 

K 2 = ( k 2 ) .  

Appendix 2. Relation between the tensors k I and k ° 
F rom the variational formulations we can link k 1 and k °. 
Let us t ransform the term including Y, in the expression of  
the average value of: 

kl(y)  = k X + k .  Vy[Y] k~ t'~ = kT'Xt+kfVy,[Y"]. 

In order to achieve this, we use the variational formulations 
associated with the fields XL They express that any con- 
t inuous periodic field w verifies : 

f k , . V ~ p ( w ) d v = - f n V y ( w ) . k . V y ( X O d v .  

Letting w = YJ'~ and taking into account the symmetry of  k, 
we obtain : 

f n [k ) tm-k ' f lX l ]dv=In[k ,  tV,p(Y~')]dv 

= -- ffl Vy(yt'n) "k. Vy(X j) dr. 

Now, using X j as test field in the variational formulation 
associated with Y~'~, we get : 

- fn Vy(Ytm) • k. V,(X0 dv = fn [(V~ • klt')XJ 

+ kTX*Vy,(X0 dr. 
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So : 

Iikllmdv=ffl(Vy*kllm)xJdO~-ffl~pXlVyp(XJ)]-~k~Xldv. 
That  is, when introducing k ° : 

fnk)~m dv = fn(Vy.kltm)XJ dv+ fnk°JX' dv 

and, by replacing the divergence by its expression, we estab- 
lish the identity : 

K)'~-K°'(pCXJ)/(pC) = (kn°JXt-k°m'XJ). 

Note. In the case of  a constant  value of  pC this relation 
becomes : 

If,) t~ = <k °mJXt -- k° tXJ > 
which proves the ant isymmetry of  tensor K ~ with regards to 
the indexes (j , /) .  


